Genetic Causes of Putative Autosomal Recessive Intellectual Disability Cases in Hamedan Province

Authors

Abstract:

Objective: The aim of this study was to investigate the genetic causes of autosomal recessive intellectual disabilities (AR-ID) in Hamadan province of Iran. Materials & Methods: In this descriptive-analytical cross-sectional study, 25 families with more than one affected with putative autosomal recessive intellectual disability were chosen with collaboration of Welfare Organization of Hamadan province. Families were included a total of 60 patients (39 male and 21 female) whose intellectual disability had been confirmed by Raven IQ test. Each family was asked for clinical examination and getting consent form. Blood sample was collected from each family. One proband from each family was tested for CGG repeat expansion in FMR1 gene, chromosomal abnormalities and inborn errors of metabolism. We also performed homozygosity mapping based on STR markers for seven known MCPH loci in families with primary microcephaly and AR-ID. Results: Five families had full mutation of Fragile X syndrome. No chromosomal abnormalities were identified. Metabolic screening revealed one family with Medium Chain Acyl CoA Dehydrogenase deficiency. None of three families with primary microcephaly and AR-ID showed linkage to any of known seven MCPH loci. Conclusion: The main causes of ID in Hamadan province were Fragile X syndrome and Autosomal Recessive Primary Microcephaly with the frequencies of 20% and 12%, respectively.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Mutation in Aminoacyl Trna Synthetase 1 In Autosomal Recessive ‎Intellectual Disability ‎

Background: Intellectual disability (ID) is one of the most common neurodevelopment disorders that caused by both environment and genetic factors. Also genetic defects have involving for approximately 50% of ID etiology, it is demonstrated that genetics play significant role in ID development. The important risk factor in most country in ID is consanguinity marriage. Iran has high frequency of ...

full text

Mutations in SLC6A17 cause autosomal-recessive intellectual disability.

Homozygous SLC6A17-mutations cause autosomalrecessive intellectual disability with progressive tremor, speech impairment, and behavioral problems Iqbal Z et al. (2015) American Journal of Human Genetics 96(3): 386–396 Intellectual disability (ID) is a heterogeneous and debilitating neurodevelopmental disorder which affects up to 3% of the general population. Despite the high prevalence, only up...

full text

NDST1 missense mutations in autosomal recessive intellectual disability.

NDST1 was recently proposed as a candidate gene for autosomal recessive intellectual disability in two families. It encodes a bifunctional GlcNAc N-deacetylase/N-sulfotransferase with important functions in heparan sulfate biosynthesis. In mice, Ndst1 is crucial for embryonic development and homozygous null mutations are perinatally lethal. We now report on two additional unrelated families wit...

full text

Mutations in NSUN2 cause autosomal-recessive intellectual disability.

With a prevalence between 1 and 3%, hereditary forms of intellectual disability (ID) are among the most important problems in health care. Particularly, autosomal-recessive forms of the disorder have a very heterogeneous molecular basis, and genes with an increased number of disease-causing mutations are not common. Here, we report on three different mutations (two nonsense mutations, c.679C>T ...

full text

Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability.

Causes of autosomal-recessive intellectual disability (ID) have, until very recently, been under researched because of the high degree of genetic heterogeneity. However, now that genome-wide approaches can be applied to single multiplex consanguineous families, the identification of genes harboring disease-causing mutations by autozygosity mapping is expanding rapidly. Here, we have mapped a di...

full text

Disruption of the methyltransferase-like 23 gene METTL23 causes mild autosomal recessive intellectual disability

We describe the characterization of a gene for mild nonsyndromic autosomal recessive intellectual disability (ID) in two unrelated families, one from Austria, the other from Pakistan. Genome-wide single nucleotide polymorphism microarray analysis enabled us to define a region of homozygosity by descent on chromosome 17q25. Whole-exome sequencing and analysis of this region in an affected indivi...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 13  issue 1

pages  66- 70

publication date 2012-04

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023